Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf 下载 txt 阿里云 lit rtf azw3 免费

Making sense of data了解数据:探索数据分析与数据挖掘实用指南精美图片
》Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书籍版权问题 请点击这里查看《

Making sense of data了解数据:探索数据分析与数据挖掘实用指南书籍详细信息

  • ISBN:9780470074718
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2006-11
  • 页数:292
  • 价格:636.20
  • 纸张:胶版纸
  • 装帧:平装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看

内容简介:

  A practical, step-by-step approach to making sense out of data

Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.

Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:

* Problem definitions

* Data preparation

* Data visualization

* Data mining

* Statistics

* Grouping methods

* Predictive modeling

* Deployment issues and applications

Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.

From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.


书籍目录:

Preface

1 Introduction

 1.1 Overview

 1.2 Problem definition

 1.3 Data preparation

 1.4 Implementation of the analysis

 1.5 Deployment of the results

 1.6 Book outline

 1.7 Summary

 1.8 Further reading

2 Definition

 2.1 Overview

 2.2 Objectives

 2.3 Deliverables

 2.4 Roles and responsibilities

 2.5 Project plan

 2.6 Case study

  2.6.1 Overview

  2.6.2 Problem

  2.6.3 Deliverables

  2.6.4 Roles and responsibilities

  2.6.5 Current situation

  2.6.6 Timetable and budget

  2.6.7 Cost/benefit analysis

 2.7 Summary

 2.8 Further reading

3 Preparation

 3.1 Overview

 3.2 Data sources

 3.3 Data understanding

  3.3.1 Data tables

  3.3.2 Continuous and discrete variables

  3.3.3 Scales of measurement

  3.3.4 Roles in analysis

  3.3.5 Frequency distribution

 3.4 Data preparation

  3.4.1 Overview

  3.4.2 Cleaning the data

  3.4.3 Removing variables

  3.4.4 Data transformations

  3.4.5 Segmentation

 3.5 Summary

3.6 Exercises

 3.7 Further reading

4 Tables and graphs

 4.1 Introduction

 4.2 Tables

  4.2.1 Data tables

  4.2.2 Contingency tables

  4.2.3 Summary tables

 4.3 Graphs

  4.3.1 Overview

  4.3.2 Frequency polygrams and histograms

  4.3.3 Scatterplots

  4.3.4 Box plots

  4.3.5 Multiple graphs

 4.4 Summary

 4.5 Exercises

 4.6 Further reading

5 Statistics

 5.1 Overview

 5.2 Descriptive statistics

  5.2.1 Overview

  5.2.2 Central tendency

  5.2.3 Variation

  5.2.4 Shape

  5.2.5 Example

 5.3 Inferential statistics

  5.3.1 Overview

  5.3.2 Confidence intervals

  5.3.3 Hypothesis tests

  5.3.4 Chi-square

  5.3.5 One-way analysis of variance

 5.4 Comparative statistics

  5.4.1 Overview

  5.4.2 Visualizing relationships

  5.4.3 Correlation coefficient (r)

  5.4.4 Correlation analysis for more than two variables

 5.5 Summary

 5.6 Exercises

 5.7 Further reading

6 Grouping

 6.1 Introduction

  6.1.1 Overview

  6.1.2 Grouping by values or ranges

  6.1.3 Similarity measures

  6.1.4 Grouping approaches

 6.2 Clustering

  6.2.1 Overview

  6.2.2 Hierarchical agglomerative clustering

  6.2.3 K-means clustering

 6.3 Associative rules

  6.3.1 Overview

  6.3.2 Grouping by value combinations

  6.3.3 Extracting rules from groups

  6.3.4 Example

6.4 Decision trees

  6.4.1 Overview

  6.4.2 Tree generation

  6.4.3 Splitting criteria

  6.4.4 Example

 6.5 Summary

 6.6 Exercises

 6.7 Further reading

7 Prediction

 7.1 Introduction

  7.1.1 Overview

  7.1.2 Classification

  7.1.3 Regression

  7.1.4 Building a prediction model

  7.1.5 Applying a prediction model

 7.2 Simple regression models

  7.2.1 Overview

  7.2.2 Simple linear regression

  7.2.3 Simple nonlinear regression

 7.3 K-nearest neighbors

7.3.1 Overview

  7.3.2 Learning

  7.3.3 Prediction

7.4 Classification and regression trees

  7.4.1 Overview

  7.4.2 Predicting using decision trees

  7.4.3 Example

 7.5 Neural networks

  7.5.1 Overview

  7.5.2 Neural network layers

  7.5.3 Node calculations

  7.5.4 Neural network predictions

  7.5.5 Learning process

  7.5.6 Backpropagation

  7.5.7 Using neural networks

  7.5.8 Example

7.6 Other methods

  7.7 Summary

  7.8 Exercises

  7.9 Further reading

8 Deployment

 8.1 Overview

 8.2 Deliverables

 8.3 Activities

 8.4 Deployment scenarios

 8.5 Summary

 8.6 Further reading

9 Conclusions

 9.1 Summary of process

 9.2 Example

  9.2.1 Problem overview

  9.2.2 Problem definition

  9.2.3 Data preparation

  9.2.4 Implementation of the analysis

  9.2.5 Deployment of the results

 9.3 Advanced data mining

  9.3.1 Overview

  9.3.2 Text data mining

  9.3.3 Time series data mining

  9.3.4 Sequence data mining

 9.4 Further reading

Appendix A Statistical tables

 A.1 Normal distribution

 A.2 Student’s t-distribution

 A.3 Chi-square distribution

 A.4 F-distribution

Appendix B Answers to exercises

Glossary

Bibliography

Index


作者介绍:

GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

A practical, step-by-step approach to making sense out of data

Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.

Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:

* Problem definitions

* Data preparation

* Data visualization

* Data mining

* Statistics

* Grouping methods

* Predictive modeling

* Deployment issues and applications

Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.

From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.


书籍真实打分

  • 故事情节:8分

  • 人物塑造:9分

  • 主题深度:6分

  • 文字风格:6分

  • 语言运用:3分

  • 文笔流畅:7分

  • 思想传递:9分

  • 知识深度:4分

  • 知识广度:5分

  • 实用性:7分

  • 章节划分:3分

  • 结构布局:5分

  • 新颖与独特:5分

  • 情感共鸣:6分

  • 引人入胜:3分

  • 现实相关:7分

  • 沉浸感:5分

  • 事实准确性:9分

  • 文化贡献:8分


网站评分

  • 书籍多样性:5分

  • 书籍信息完全性:6分

  • 网站更新速度:3分

  • 使用便利性:8分

  • 书籍清晰度:8分

  • 书籍格式兼容性:6分

  • 是否包含广告:4分

  • 加载速度:8分

  • 安全性:4分

  • 稳定性:8分

  • 搜索功能:5分

  • 下载便捷性:7分


下载点评

  • 一星好评(559+)
  • 体验满分(344+)
  • 值得下载(113+)
  • 品质不错(266+)
  • 速度慢(396+)
  • 无颠倒(674+)
  • 无漏页(181+)
  • 目录完整(70+)
  • 实惠(463+)

下载评价

  • 网友 菱***兰:

    特好。有好多书

  • 网友 后***之:

    强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!

  • 网友 常***翠:

    哈哈哈哈哈哈

  • 网友 敖***菡:

    是个好网站,很便捷

  • 网友 权***波:

    收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!

  • 网友 芮***枫:

    有点意思的网站,赞一个真心好好好 哈哈

  • 网友 师***怀:

    好是好,要是能免费下就好了

  • 网友 宫***玉:

    我说完了。

  • 网友 温***欣:

    可以可以可以

  • 网友 蓬***之:

    好棒good

  • 网友 索***宸:

    书的质量很好。资源多


随机推荐