Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf 下载 txt 阿里云 lit rtf azw3 免费

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:5分
书籍信息完全性:6分
网站更新速度:3分
使用便利性:8分
书籍清晰度:8分
书籍格式兼容性:6分
是否包含广告:4分
加载速度:8分
安全性:4分
稳定性:8分
搜索功能:5分
下载便捷性:7分
下载点评
- 一星好评(559+)
- 体验满分(344+)
- 值得下载(113+)
- 品质不错(266+)
- 速度慢(396+)
- 无颠倒(674+)
- 无漏页(181+)
- 目录完整(70+)
- 实惠(463+)
下载评价
- 网友 菱***兰:
特好。有好多书
- 网友 后***之:
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 敖***菡:
是个好网站,很便捷
- 网友 权***波:
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 芮***枫:
有点意思的网站,赞一个真心好好好 哈哈
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 宫***玉:
我说完了。
- 网友 温***欣:
可以可以可以
- 网友 蓬***之:
好棒good
- 网友 索***宸:
书的质量很好。资源多
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
一只怪鸟-超级好朋友绘本 pdf 下载 txt 阿里云 lit rtf azw3 免费
史努比漫画全集25 pdf 下载 txt 阿里云 lit rtf azw3 免费
人性的弱点 pdf 下载 txt 阿里云 lit rtf azw3 免费
现代晶体学.第2卷,晶体的结构 pdf 下载 txt 阿里云 lit rtf azw3 免费
猜一猜 我是谁(套装全八册。可爱有趣、色彩明快、适合0-3岁宝宝手指戳戳的猜谜洞洞书!训练宝宝逻辑思考、判断能力!) pdf 下载 txt 阿里云 lit rtf azw3 免费
图说世界风俗文化 pdf 下载 txt 阿里云 lit rtf azw3 免费
新编十二生肖春联 pdf 下载 txt 阿里云 lit rtf azw3 免费
四年级语文+数学+英语【人教版】 pdf 下载 txt 阿里云 lit rtf azw3 免费
奇门精粹 pdf 下载 txt 阿里云 lit rtf azw3 免费
高层建筑结构设计 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 说吧身体 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 现代学徒制框架下金融管理专业人才培养探索与实践 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 宏章出版.四川省会计从业资格考试辅导教材 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 纽伯瑞儿童文学小说16册 英文原版 Newbery Award 成长故事 进口青少年中小学英语读物书籍 坟场之书 神奇的收费亭洞 第十四条金鱼 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 企业纳税筹划实用方法与案例解析 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 铁血战鹰队系列:拔剑,反恐的战士! pdf 下载 txt 阿里云 lit rtf azw3 免费
- 中国四大古典名著连环画 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 9787547818824 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 艾玛学反义词 pdf 下载 txt 阿里云 lit rtf azw3 免费
- 告别情绪性进食的DBT方法 pdf 下载 txt 阿里云 lit rtf azw3 免费
书籍真实打分
故事情节:8分
人物塑造:9分
主题深度:6分
文字风格:6分
语言运用:3分
文笔流畅:7分
思想传递:9分
知识深度:4分
知识广度:5分
实用性:7分
章节划分:3分
结构布局:5分
新颖与独特:5分
情感共鸣:6分
引人入胜:3分
现实相关:7分
沉浸感:5分
事实准确性:9分
文化贡献:8分